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INTRODUCTION 

When a rubber network is drawn, the 
segments of the polymer chains which 
form the network become preferen- 
tially aligned with respect to the axis 
of stretching. Using Treloar's model 1 
for a rubber consisting of freely jointed 
statistical segments, Roe and Krigbaum 2 
derived expressions for some of the co- 
efficients in an expansion of the dis- 
tribution function of segmental orienta- 
tions in terms of Legendre polynomials. 
Most methods of studying molecular 
orientation in polymers can determine 
only one or a few of these coefficients, 
rather than the complete distribution 
of orientations, so that their theoretical 
prediction and comparison with experi- 
mentally determined values is a useful 
way of checking the validity of any 
theory of rubber elasticity which may 
subsequently be used to predict the 
elastic, photoelastic or other properties 
of the rubber. 

In their derivation of expressions 
for the coefficients of the second, 
fourth and sixth order polynomials 
Roe and Krigbaum, used an expansion 
of the inverse Langevin function given 
by Kuhn and Grfin a which applies only 
to low orientation of the segments with 
respect to the end-to-end vector of a 
chain. They also derived an expression 
for the coefficient of the second order 
polynomial using an approximate ex- 
pression for the inverse Langevin func- 
tion given by Treloar 1. This leads to a 
closed three term expression for the 
second order coefficient which is very 
similar to the first three terms in the 
expression calculated using Kuhn and 
Grfin's expansion, which are, however, 
only the first terms of  an infinite series. 

This Note has three purposes. The 
first is to show that if the inverse Lan- 
gevin function is evaluated using 
Treloar's expression the predicted co- 
efficient of the second order Legendre 
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polynomial has a value close to that 
given by the first three terms derived 
by Roe and Krigbaum with the use of 
Kuhn and Grfin's expansion, whereas 
the coefficient of the fourth order 
Legendre polynomial has a value much 
greater than that given by the first 
two terms derived by Roe and Krig- 
baum, except for very low values of 
draw ratio or very high values of  the 
number of random links, N, between 
adjacent crosslink points. The second CO = 1 
purpose is to show directly that if the 
inverse Langevin function is evaluated C2 = 1 - -- 
numerically, values of both the second 
and fourth order coefficients are ob- 
tained which are essentially the same 
as those derived using Treloar's expres- C4 = 1 - - -  
sion. The third purpose is to show 
that by a simple additional assump- where: 
tion the predictions of the model can 
be extended beyond the draw ratio 
N 1/2. This is the limit of the conven- 
tional rubber theory because at this 
draw ratio chains initially pointing in t - 
the draw direction become fully 
extended. 

LOW DRAW RATIO REGION 

Roe and Krigbaum's treatmentt is equi- 
valent to showing that if N(0) is the 
probability per unit solid angle that a 
random link makes the angle 0 with the 
draw direction, then: 

(Pt(cos0)) = 27r f N(O)Pl(cos 0)sinOd0 

0 

1 
= f X3(PI(c°sO'))PI(c°sO)d(C°SO) 

-1 

(1) 

t Roe and Krigbaum use normalized 
Legendre polynomials, whereas we do not. 
In this Note Po(x) = 1, P2(x) = (3x 2 - 1)/2 
and P4(x) = (3 - 30x 2 + 35x4)/8. 
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where Pt(x) is the lth order Legendre 
polynomial 4 in x, the angled brackets 
denote the value averaged over the dis- 
tribution function and ~ is the draw 
ratio. O is the angle between the draw 
direction and the end-to-end vector of 
a typical chain after drawing and 0' is 
the angle between a typical segment 
in the chain and the end-to-end vector. 
The values of  (P/(cos0')) for l = 0, 2 
and 4 which, apart from normalization 
factors, are the same as CO, C2 and C4 
given by Roe and Krigbaum, are: 

3t 
(2) 

10t 35 105t 

~2 ~3 

= t , -1(0  (3) 

r 
(4) 

Ms 

where L-1  is the inverse Langevin func- 
tion, l s is the length of a statistical seg- 
ment and r is the stretched length of 
the chain, r and O are related by: 

r 2 = Nl22~2 
[•3 _ CA3 _ 1)cos20] (5) 

Any required value of (/'/(cos O)) is ob- 
tained by substituting the appropriate 
value of Cl obtained from equation (2) 
into equation (1) after first expressing 
/3, and hence Ct, explicitly in terms of 
L 

Using the expansion given by Kuhn 
and Grfin, viz: 

9t 3 297t 5 
3 = 3t + - -  + - -  + 0(t 7) (6) 

5 175 

Roe and Krigbaum obtain: 

(P2(cos0)> = 



, ( ; )  ,6 _ _  k 2 _  + 
5N 875N 2 

k 4 ) 108 )`4 + . . . .  + ~  
3 3)` 2 6125N 3 

(3,38)  (:) 
)`6 + + 0  

s 5-x3 

(7a) 

<Ca(cos0)> = 

175N 2 )`4 _ 2), + 

2 1 6 (  4 ) ` 3 7 + 6 )  

13475N 3 )`6 5 5 

(:) +o ~-~ (7b) 

Using Treloar's closed expression 

3t  3t 2 t 4 t 6 
1 - +- +-- (8)  

5 5 5 

to evaluate fl they obtain an expression 
equivalent to: 

, ( , )  (ez(cos0)) = ~-~ X 2 _ ~ + 

25N 2 )`4 + _ _ 3 
+ 

1 ( 3)` 3 8 )  
)`6 + 

35N 3 5 5)` 3 

(9) 

7(16t  8 + 9 t  10 + 12t 12 + 3t 14 + t16)] 10(m - 5) 

ab 
(10)  

Since from equations (4) and (5) where 

:/[ ] t 2 = _  )`3 _ ()`3 _ 1)cos20 1 

;o= I 
(11) -1 

equation ( l )  shows that  we need to 
evaluate integrals o f  the type: 

1 
f (3 -- 30~ 2 + 35~4)d~j 

Im = (a - b~2) m/2 
-1 

so that 
(12) 

where ~ = cos@, a = )`3 and b = )`3 _ 1. 
It may readily be shown that: Since 

1 ( ( 6 +  10 6 
I m - - -ff + - -  

m - 2  l a  m - 4  k 

m - 3  10 3 : ]  

[ - - ~ -  +ab 

3 [ (m - 5)(m - 3) 

m - - 4  [ a 2 + 

Table la (P2(cos0))and (P4 (cos 0 )) for N= 10 
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(13) 

d~ (14) 
-~a- b~2) m/2 

It may also be shown that 

I0  a ( m -  2) 2 + ( m - 3 ) I  O_2 

(is) 

/~3=2/)` 3 (16) 

I01 = 2 [sin -1 (1 -- 1/)`3) 1/21/()`3_ 1)1/2 

= 2 [tan-l()`3 _ 1)1/2]/()`3 _ 1)1/2 

(17) 

all the required values of Im are readily 
obtained. (P4(cos0)) is then obtained 
explicitly as equation (18). 

Tables la and lb show, for N = 10 
and N = 50, respectively, values of 
(P2(cos0)) calculated from equation 

(P2(coso)} 

Equation Equation Numerical 
K (7a) (9) calculation 

(P4(cose)> 

Equation Equation Numerical 
(7b) (18) calculation 

1.50 0.034 0~34 0.034 0.001 0.001 0.001 
2.00 0.078 0.078 0.078 0.003 0~05 0.004 
2.50 0.138 0.140 0.140 0.010 0.016 0.015 
3.00 0.220 0.228 0.228 0.024 0.060 0.060 
3.16 0.253 0.263 0.263 0.032 0~96 0.096 

Table lb (P2(cosO)}and(P4(cosO))for N = 50 

(P2(coso)) 

Equation Equation Numerical Equation 
;k (7a) (9) calculation (7b) 

but they do not evaluate (P4(cos0)) 
using Treloar's expression, which we 
have done. 

Using this expression we find: 
2.00 0.014 0.014 0.014 0.000 
4.00 0.068 0.068 0.068 0.002 

] 6.00 0.172 0.175 0.175 0.015 
C4 = 2 - ~  [ - 5 t 2  + 94t4  - 1 5 1 t 6  + 7.07 0.258 0.268 0.269 0.033 

(P4(cosO)) 

Equation Numerical 
(18) calculation 

0.000 0.000 
0.004 0.002 
0.027 0.025 
0.098 0.098 
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Explicit expression - equation (18) - for (P4(cos0)): 

(P4(cos0)) - 360N [ 3 - - ~  - ~  1-)- ~3  _ 1)2 1 - CA 3 _ i)1/2 

94( 4 1) 6)+ 
1125N 2 ~ 1575N3,~ 5 5 ~-3 

112 l 2)` 5 37 
+ _ _ _  ~)`8 )`2 _ _ _  

2025N 4 7 35 

36 + 48 ) 

35)` 35)` 4 

7 (  5 ) ` 4 2 2 ) ` 1 6  3 2 )  
+ ~  ) ` 1 o  _ _  + 

7 21 21), 2 2 - ~  

8 4  / 2)` 9 5)` 6 200)` 3 32 128 

2 9 - - ~  )`12| + 11 11 231 33 231)` 3 
+ 

7 / 4)` 11 37)` 8 290)` 5 2720)` 2 
+ _ _  ~)`14 + _ _  

1125N 7 13 143 429 3003 

384 256 / 
_ _ +  
1001)` 4 143)` 7 J 

7 [ 2)` 13 7)` l° 28)` 7 112)` 4 
+ _ _  ~)`16 + _ _  

3825N 8 5 

128)` 

65 55 143 143 

128 512 4096 + | 

165)` 2 2145)` 5 2145)` 8 ] 

128 ) 
- -  + 7-7~ 

2624 

3003)` 

(9), which is based on Treloar's expres- 
sion, and from the three-term expres- 
sion in equation (7a) together with 
values of (P4(cos0))calculated from 
equation (18) and from the two term 
expression in equation (7b). It is seen 
that expression (7a) slightly under- 
estimates (P2(cos0)), whereas expres- 
sion (7b) seriously underestimates 
(P4(cosO)) for all except the lowest 
values of )`. 

It is useful to compare the values 
given by equations (9) and (18) with 
those obtained using a numerical 
evaluation of the inverse Langevin 
function, together with numerical 
integration of equation (1). For nu- 
merical integration it is preferable to 
rewrite equation (1) in terms of cosO0 
where ®0 is the angle which the end-to- 
end vector makes with the draw direc- 
tion before drawing. Equal numbers 
of chains are then contained in equal 
intervals of cosO0. The results of the 
numerical evaluation are compared 
with those obtained from equations 
(9) and (18) in Tables la and lb. It is 

seen that for all practical purposes 
equations (9) and (18) give satisfactory 
results. Since the use of these equa- 
tions to evaluate (P2(cos0)) and 
(P4(cos0)) for a particular value of N 
and )` is much more straightforward 
than the method of numerical integra- 
tion, this will generally be preferable. 

HIGH DRAW RATIO REGION 

It has already been pointed out that 
equation (1) applies only for values of 
)` <N1/2; because at the critical draw 
ratio )`c = N1/2 chains whose end-to- 
end vectors are originally in the draw 
direction become fully extended. 
Above ~ chains which were not origi- 
nally parallel to the draw direction may 
also become fully extended. In order 
to obtain an approximation to the be- 
haviour of the network above )`e the 
following simple assumptions have 
been made. 

(1) Any chain which becomes fully 
extended subsequently rotates as a rigid 
rod whose orientation changes like the 
join of two points in a body undergoing 
an affine deformation. 

(2) The end-to-end vectors of chains 
which are not fully extended continue 
to rotate and extend affinely. 

These two assumptions are clearly 
incompatible and their use is simply a 
mathematical device to allow the cal- 
culation to be performed for )  ̀> ?,c. 
In reality, once any chains are fully 
extended either departure from affine 
deformation must take place (and it 
may in fact take place before this), 
chains must slip at the crosslink points 
or chains must break. All of these 
effects may take place and it does not 
seem possible to predict in any simple 
way whether the present assumptions 
will lead to higher or lower values of 
(P2(cos0)) and (P4(cos0)) than the 
'true' values. For values of )` not much 
greater than )`e they may lead to values 
not too far distant from the 'true' 
ones. 

Mathematically, the assumptions 
are expressed by setting C2 and C4 
equal to unity for chains which have 
become fully extended. These chains 
are those for which O in the stretched 
rubber is less than Oc, where 0 c is 
given by )`2IN= )`3 _ (-A3 _ 1)cos2Oc:~. 
The results have been evaluated using 
Treloar's expression only for the limit 
)`, N + oo with x = )`2IN finite, and 
have been quoted previously s. They 
are, for x > 1 : 

128 
(P2(cos0)) = 1 175xl/2 (19) 

0.9022 
(P4(cos0)) = 1 xl/2 

These results have also been evalua- 
ted fo rN= 10 and N=  50, using the 
numerical method of calculating the 
inverse Langevin function and evaluat- 
ing the modified integral in equation 
(1). Values calculated from equation 
(19) and by the numerical method are 
tabulated in Tables 2a and 2b and it is 
seen that even for a value of N as low 
as 10 equation (19) gives results that 
are adequate for most purposes. These 
Tables also show the fraction of chains 
that are in the fully extended state 
(FEb-). 

$ In ref 5 this equation is incorrectly stated 
to apply to the angle in the unstretched 
rubber. 
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Table2a (P2(cosO))and(P4(cosO)}for N = 10 

(P2 (cos o )) (/'4 (cos o )) 

Equation Numerical Equation Numerical 
k (19) calculation (19) calculation FEF 

3.5 0.339 0.335 0.185 0.183 0,099 
4.0 0,422 0.417 0.287 0.281 0.213 
4.5 0,486 0.48 1 0,366 0.358 0.301 
5.0 0.537 0.534 0,429 0.423 0,371 
7.5 0,692 0.688 0.620 0.611 0.581 

10.0 0.769 0.766 0.715 0.707 0.685 
15.0 0.846 0.844 0.810 0.804 0.790 
20.0 0.884 0.883 0.857 0.853 0.842 

Table2b {P2(cosOl)and(P4(cosO})forN=50 

(P2 (COS O )) (P4 (COS 0 )) 

Equation Numerical Equation Numerical 
h (19) calculation (19) calculation FEF 

8.0 0,354 0,355 0.203 0.206 0.116 
10.0 0.483 0.483 0.362 0.363 0.293 
15.0 0.655 0.655 0.575 0.575 0.529 
20.0 0.741 0,742 0.681 0.681 0,647 
25.0 0.793 0.793 0.745 0.744 0.717 
30.0 0.828 0.827 0.787 0,787 0.764 

I.O. DISCUSSION ..,,.,,.~"" 
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Figure I (P4(cosO))as a function of 
(P2 (cos e )). • . . . . . .  , Upper and lower 
bounds on (P4 (cos 0 )} for a given value of 
(P2 (cos 8)); - - ,  pseudo-affine rigid 
rod rotation theory; . . . .  , modified 
rubber theory, present work 

Despite the simplicity of the basic rub- 
ber model employed and the assump- 
tions made to extend it to draw ratios 
> X c, the values predicted for both 
(P2(cos0)) and <P4(cos0)) have been 
shown to be in reasonably good agree- 
ment with experimental determinations 
of (P2(cos0)) and G°4(cos0)) for 
poly(ethylene terephthalate) drawn at 
80°C, provided that the value of N is 
chosen appropriately, and a simple 
method of determining N has been 
given 6, 

If samples drawn under similar con- 
ditions to a wide range of draw ratios 
are not available, it is possible to form 
some idea of whether the present 
model for the production of orienta- 
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tion is applicable by comparing the 
relationship between the values of 
(P4(cos0)) and (P2(cos0)) observed 
with that'predicted by the present 
model and with that predicted by the 
other model frequently used in discus- 
sing the development of orientation, 
the pseudo-affine rigid rod rotation 
model 7. Figure I shows the mathema- 
tical limits on LP4(cos 0)) for a given 
q)2(cos0)), together with the relation- 
ship between these quantities predic- 
ted on the basis of the pseudo-affine 
model and on the basis of equations 
(9), (18) and (19). Equations (9) and 
(18) have been used in the limit N, 
k -* oo with x = ~k2/N finite, but evalua- 
tion for finite N as low as 5 by the 
numerical method shows differences 
in the predicted (P4(cos0)) only of 
order 10 -3 , and these occur only for 
(P2(cos 0)) less than about 0.2. 
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INTRODUCTION 

Water-soluble inorganic salts dispersed 
in polymers can be leached out by 
subjecting the polymer/salt particles to 
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immersion in water. The leaching 
method was employed by Fossey and 
Smith 1 to produce polyethylene foams 
and by Gregorian 2 to prepare cross- 
linked microporous polyolefin f'dms. 

Nielsen and Lee 3 studied the mechani- 
cal properties of polystyrene filled 
with ground rock salt and polystyrene 
foams produced by extracting the salt 
with water. A similar technique was 
used by Smith 4 to prepare polyurethane 
foams, and has also been applied to 
the manufacture of microcellular 
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